# LOW TEMPERATURE HEAT CAPACITY OF HETEROCYCLIC POLYMER NETWORKS

# V. P. Privalko\*, V. P. Azarenkov and A. V. Baibak

Institute of Macromolecular Chemistry, Academy of Sciences of Ukraine, 253160, Kiev, Ukraine

# Abstract

The predicted crossover to a fractal-like vibrational regime above 8-10 K was apparently proved by precise measurements of heat capacity of a series of cross-linked heterocyclic polymers.

Keywords: heat capacity, heterocyclic polymers, polymers

## Introduction

Recent theories of disordered solids [1-4] predict the crossover in the density of vibrational states,  $D(\omega) \approx \omega^{d-1}$  (where  $\omega$  is the frequency of vibrations), in the acoustical limit (i.e., in the temperature interval far below the relevant Debye temperature,  $T \ll 0$ ) manifesting itself by a change of the exponent from d = 2 (at low frequencies, hence, temperatures) to d = 5/3 (at higher temperatures above the crossover point). One possibility to check this prediction may be provided by measurements of the heat capacity which scales as  $C_p \approx T^d$  in this temperature interval [1-4]. In the present communication we will briefly report on the experimental evidence apparently supporting the above theoretical predictions which was obtained from precise heat capacity measurements for a series of cross-linked heterocyclic polymers. A more detailed discussion of the experimental data will be the subject of a separate paper.

<sup>\*</sup> To whom correspondence should be addressed



Fig. 1 Lg-lg plot of the heat capacity vs. temperature for samples HMDI/ER = 30/70 (1), HMDI/ER = 50/50 (2), HMDI/ER = 60/40 (3) and HMDI/ER = 80/20 (4). Starting from curve 2, each next curve is shifted upwards by lg 2 with respect to the previous curve

#### Experimental

The samples of the present study were prepared by a catalytic copolymerization of the base epoxy resin (ER) with hexamethylene diisocyanate (HMDI) in the presence of 1% (by weight) of triethylene amine (catalyst) at 393 K during 2 h. Values of the room-temperature density  $\rho$ , glass transition temperature  $T_g$  and the network mesh size  $\langle M_c \rangle$  (more precisely, mean molecular weight of chain fragments between network junctions) [5–8] are collected in Table 1.

Heat capacity  $C_p$  was measured with the aid of an automated adiabatic calorimeter [9] in the temperature interval 4.2-300 K. The data were taken in steps of 0.2-0.6 deg (in the interval 4.2-50 K), 0.6-1.5 deg (in the interval 50-150 K) and 1.5-5 deg (at higher temperatures); the estimated mean errors in the temperature intervals indicated were 2%, 1% and 0.5%, respectively.

| Property                      | HMDI/ER molar ratio |        |        |        |
|-------------------------------|---------------------|--------|--------|--------|
|                               | 80/20               | 60/40  | 50/50  | 30/70  |
| $\rho / g \cdot cm^{-3}$      | 1.2330              | 1.2293 | 1.2271 | 1.1998 |
| <i>T</i> <sub>g</sub> / K     | 390                 | 375    | 343    | 331    |
| $< M_c >$                     | 250                 | 520    | 720    | 2100   |
| <i>T</i> * / K                | 310                 | 305    | 305    | 220    |
| $\omega * / \mathrm{cm}^{-1}$ | 157                 | 153    | 153    | 212    |
| m* / mol                      | 105                 | 100    | 100    | 95     |

Table 1 Selected physical properties of the studied samples

## **Results and discussion**

The values of the heat capacity of all studied samples are roughly similar both in magnitude and in the patterns of temperature dependence (Fig. 1). In a limited temperature interval (below 30 K for HMDI/ER = 30/70 and up to 40 K for other samples) these data could be reasonably well fitted to the Stockmayer-Hecht model [10] with the values of characteristic parameters (temperature  $T^*$ , frequency  $\omega^*$  and effective mass of a vibrating unit  $m^*$ ) also shown in



Fig. 2  $C_{\rm p}/T^{5/3}$  vs. T plots

Table 1. Although this model, in a strict sense, was intended to explain the heat capacity behaviour of linear polymers in the ordered (i.e. crystalline) state, its applicability to our data for disordered, cross-linked polymers is no surprise as far as the temperature dependence of  $C_p$  is hardly affected by crystallinity in this limited temperature interval [11, 12].

As can be seen from Fig. 2, the predicted proportionality,  $C_p \approx T^{5/3}$  holds in a rather narrow temperature range (from the apparent crossover point  $T_c \approx 8-10$  K to about 20 K) only for samples HMDI/ER = 80/20 and HMDI/ER = 60/40 with the highest network density (i.e. lowest  $\langle M_c \rangle$ , whereas its applicability becomes more doubtful as the HMDI/ER ratio decreases. Moreover, in the temperature interval  $T < T_c$  the temperature dependence of  $C_p$  proved much more complex than the anticipated simple scaling law,  $C_p \approx T^2$  [4]. Partially at least, this discrepancy should be attributed to the occurrence of a low-temperature peak on the  $C_p/T^3 vs$ . T plots (Fig. 3) which is currently regarded as a universal feature of the heat capacity behaviour of glasses [13-17]. Once again, the resolution of this peak becomes poorer, the looser is the chemical network density.



Fig. 3  $C_p/T^3$  vs. T plots. Curve 4 is shifted upwards by 0.5 units, and curves 2 and 1 are shifted downwards by 0.4 and 0.8 units with respect to curve 3. Solid lines are the free-hand best fits to the experimental data

### Conclusions

Precise measurements of the heat capacity of a series of cross-linked heterocyclic polymer glasses apparently proved the crossover to a fraction-like regime above 8-10 K (i.e., at the characteristic length scale about 10 nm) for samples with the highest network density. These data are thus qualitatively consistent with the results of low frequency Raman scattering studies [18] in which the upper structural scale for a fractal-like behaviour of these samples at room temperature was estimated as 3.5 nm.

### References

- 1 S. Alexander and R. Orbach, J. Phys. (Paris) Lett., 43 (1982) 625.
- 2 R. Rammal and G. Toulouse, J. Phys. (Paris) Lett., 44 (1983) 13.
- 3 S. Alexander, C. Laermans, R. Orbach and H. M. Rosenberg, Phys. Rev., B, 28 (1983) 4615.
- 4 J. P. Allen, J. Chem. Phys., 84 (1986) 4680.
- 5 V. P. Privalko, V. Yu. Kramarenko and A. M. Feinleib, Makromol. Chem., Macromol. Symp., 44 (1991) 247.
- 6 V. P Privalko and V. Yu. Kramarenko, Polymer Sci. USSR, A, 34 (1992) 265.
- 7 V. P. Privalko and V. Yu. Kramarenko, Polymer Eng. Sci., 32 (1992) 1333.
- 8 V. P. Privalko, V. Yu. Kramarenko, Yu. V. Maslak and V. F. Rosovitsky, Colloid Polymer Sci., 271 (1993).
- 9 A. P. Azarenkov, A. V. Baibak, V. Yu. Kramarenko and V. P. Privalko, Thermochim. Acta, 1993 (submitted for publication).
- 10 W. H. Stockmayer and C. E. Hecht, J. Chem. Phys., 21 (1953) 1954.
- 11 H. Baur and B. Wunderlich, Adv. Polymer Sci., 7 (1970) 151.
- 12 I. I. Perepechko, Introduction to Physics of Polymers, Khimia, Moscow 1978 (in Russian).
- 13 S. Kelham and H. M. Rosenberg, J. Phys., C, 14 (1981) 1737.
- 14 B. Huettner and W. Pompe, Phys. Stat. Sol., B, 114 (1982) 503.
- 15 H. M. Rosenberg, Phys. Rev. Lett., 54 (1985) 704.
- 16 M. I. Klinger, Usp. Fiz. Nauk, 152 (1987) 623.
- 17 Yu. M. Galperin, V. G. Karpov and V. N. Solovyov, Fiz. Tverd. Tela, 30 (1988) 3636.
- 18 V. N. Novikov, A. P. Shebanin, V. P. Azarenkov, A. V. Baibak, V. Yu. Kramarenko and V. P. Privalko, J. Raman Spectr., 1993 (submitted for publication).

Zusammenfassung — Durch präzise Messungen der Wärmekapazität einer Reihe von quervernetzten heterocyclischen Polymeren konnte wahrscheinlich die vorausgesagte Querverbindung zu einem fraktionsartigen Schwingungsbereich oberhalb 8–10 K nachgewiesen werden.